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Motivation: Background

» \What:

e Track the motion of the device
precisely in real-time

* Localize the device with respect
to a pre-built map/model

> Why:

* Needed to enable augmented
reality

» Why is it challenging?




Motivation: IPhone data

Accelerometer: Gyroscope:
-1.81, 8.31, 4.86 m/s? -0.55, -0.16, +0.17 rad/s




Sensor fusion on smartphones

» Fusion refers to combining
iInformation from several sources

» Smartphone sensors include:

Accelerometer
Gyroscope

Camera

Magnetometer (compass)
GNSS (such as GPS)
Wi-Fi/BLE

Microphone




Inertial Navigation: How it could work

» Velocity is the integral of acceleration
» Position is the integral of velocity

» \We can observe acceleration and
angular velocity in the mobile phone

Position <:> Velocity <::> Acceleration




Inertial navigation: Why it does not work

> All inertial navigation systems suffer from integration drift

» Small errors in measurement of acceleration and
angular velocity ...

» Progressively larger errors in velocity...
» Even greater errors in position.



Inertial navigation: Why it does not work

> All inertial navigation systems suffer from integration drift

» Small errors in measurement of acceleration and
angular velocity ...

» Progressively larger errors in velocity...
» Even greater errors in position.

» The dominant component in acceleration is gravity.
» Even slight error in orientation makes the gravity ‘leak’.

» The sequential nature of the problem makes the errors
accumulate.



Additional problems on smartphones

» |IMUs are cheap and small

» Noisy and low-quality signals
(biases, transients effects, alignment
Issues, etc.)

» Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

> Low sampling frequency
(100 Hz vs. 2000 Hz)

» Missing data / variable sampling rate

But these are all only hardware limitations...



Inertial Navigation: How to make it work

» Input data is the accelerometer data ax and gyroscope data wi.

[1] Solin A, Santiago C, Rahtu E, Kannala J (FUSION 2018).
Inertial odometry in handheld smartphones.



Inertial Navigation: How to make it work

» Input data is the accelerometer data ax and gyroscope data wi.

» Dynamical model:
Pk Pr—1 + Vk—1Ak
Vi | = | Vk—1 + [dk(ak + €f)d; — 9]Atk
P Q(&k + €% ) Atk]dk—1

for the position pk, velocity vk, and orientations gk over
time steps f«.

[1] Solin A, Santiago C, Rahtu E, Kannala J (FUSION 2018).
Inertial odometry in handheld smartphones.



Inertial Navigation: How to make it work

» Input data is the accelerometer data ax and gyroscope data wi.
» Dynamical model:

Pk Pr—1 + Vk—1Ak
Vi | = | Vk—1 + [Ak(@k + €%)d; — 9] Al

Ak Qf(wok + €7 ) Atk]qk—1

for the position pk, velocity vk, and orientations gk over
time steps f«.

» A (non-linear) Kalman filter combines the model with the
data in a probabilistic way.

[1] Solin A, Santiago C, Rahtu E, Kannala J (FUSION 2018).
Inertial odometry in handheld smartphones.



Inertial Navigation: How to make it work

» Additional constraints are required.
» This framework can use:

* Zero-velocity updates

* Position fixes

* |Loop-closures

* Barometric air pressure for relative height
* |ndirect orientation info

» A pseudo-constraint keeping the velocity component from
exploding



Example studies

» Equipment used:
e (Off-the-shelf iPhone

» Sensors:

 (Gyroscope, accelerometer
e Sampling rate: 100 Hz

» Computations:
e Off-line
...but can (of course) be done on the device



Example: With position fixes
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Note: The camera is not used at all.



y-displacement (meters)
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Vertical (z) displacement (meters)

Floor level 1

Elevator ride

Horizontal (y) displacement (meters)




Visual-inertial odometry

» Combining visual and
inertial data for odometry

» (Constraints from visual
features seen In
consecutive frames

» Strengths over visual-only:

e |Infer the true scale
e Survive from occlusions




Problems on smartphones

» Small field-of-view
(monocular camera)

Google Tango FOV



Problems on smartphones

» Small field-of-view
(monocular camera)

iIPhone FOV



» Small fie
(monocu

» Rolling-s

(not optimised for VIO)

» Limited processing power
(maybe not that limited...)

» Handheld movement

(different

» Full occlusions
(the camera might be covered)

» No control of environment

Problems on smartphones

d-of-view
ar camera)

nutter camera

from a drone/robot)

(moving objects, feature-poor)



PIVO

PROBABILISTIC INERTIAL-VISUAL ODOMETRY

» Previous methods tend to be developed visual-first
(and in this case visual information is bad)

» Treats visual information as a signal of opportunity
» Information hidden within the noise

» The camera provides bursts of high-quality odometry
(recognise those bursts!)

» A calibrated IMU can provide good long-range results
(learn the calibration online!)

2] Solin A, Santiago C, Rahtu E, Kannala J (WACV 2018).
PIVO: Probabilistic Inertial-Visual Odometry for Occlusion-Robust Navigation



PIVO

» State space model (solvable by EKF)

» Dynamics driven by the IMU
(alike the inertial odometry)

» Pose augmentation on every new frame
» Visual update performed per feature track

» Suspicious visual updates rejected
(if not agreeing with the uncertainties)




City-wide example




City-wide example




Recap - inertial-visual odometry

» Principled approach for
fusing inertial and visual
information

» Robusthess to occlusion
and dynamic objects in the
scene

» Comparable with state-of-
the-art in ideal scenes

» Improved performance in
challenging conditions




Visual localization

» Tracking provides relative
motion of the device




Visual localization

» Tracking provides relative
motion of the device

» Track must be aligned with a
map to obtain global
coordinates




Visual localization

» Tracking provides relative
motion of the device

» Track must be aligned with a
map to obtain global
coordinates

» This can be solved using
deep learning

=y l (L E.‘ ]
#{6-DoF Camera Pose ‘

Image courtesy of Kendall et al.

Kendall, Grimes & Cipolla: PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV 2015



Visual localization

» QGiven training images, we compute the corresponding camera poses
and a point cloud representing the 3D scene structure (= visual map)

 This is called structure-from-motion (cf. VisualSfM, COLMAP)

Image courtesy of Kendall et al.



Visual localization

» Given training images, we compute the corresponding camera poses
and a point cloud representing the 3D scene structure (= visual map)

 This is called structure-from-motion (cf. VisualSfM, COLMAP)

» At test time, the task is to estimate the camera pose (3D location + 3D
orientation) for a query image with respect to the visual map



Scene coordinate regression

» We train a fully convolutional neural network (CNN) for regressing the
scene coordinates (X,Y,Z) for all pixels

RANSAC-
Based »
Optimization

6 DoF

RGB Image Scene Coordinate Prediction

Convolution

- Upconvolution



Scene coordinate regression

» We train a fully convolutional neural network (CNN) for regressing the
scene coordinates (X,Y,Z) for all pixels

» We compute the camera pose by solving the perspective-n-point
problem from the resulting 2D-to-3D matches using RANSAC
(i.,e. CNN maps the 2D pixel coordinates to 3D scene coordinates)

RANSAC-
Based »
Optimization

6 DoF

Scene Coordinate Prediction

Convolution



Angle-based single-view reprojection loss

» We propose angle-based reprojection
loss for optimizing the CNN

» The angle between the rays
corresponding to true (X’) and
predicted (X) scene coordinates is
minimized for all pixels in all training
Images

» This formulation does not require a
3D scene model, training images with
poses are sufficient!
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State-of-the-art results
for 7-Scenes dataset




Localization of each frame In a test video
(no tracking)

d

-

> ” i P
RS
pe

Brachmann & Rother (CVPR 2018) Ours

Li et al.: Scene coordinate regression with angle-based reprojection loss for camera relocalization. ECCVW 2018



Conclusion

» Contributions for both tracking and localization:

* Probabilistic inertial-visual odometry for occlusion-robust navigation
* Scene coordinate regression with angle-based reprojection loss

» Ultimately, tracking and localization should be integrated



Conclusion

» Contributions for both tracking and localization:

* Probabilistic inertial-visual odometry for occlusion-robust navigation
* Scene coordinate regression with angle-based reprojection loss

» Ultimately, tracking and localization should be integrated

» Potential for impact in various areas:

* More robust and precise navigation for autonomous machines
(drones, robots, vehicles)

* Improved inside-out tracking for virtual reality glasses

 3D-aware mobile applications (e.g. for measurement purposes)

* Immersive augmented reality applications for smartphones
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Thank you!

https://users.aalto.fi/~kannalj1/
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