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Motivation: Background
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

What: 

• Track the motion of the device 

precisely in real-time

• Localize the device with respect 

to a pre-built map/model 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But these are all only hardware limitations...

Why: 

• Needed to enable augmented 

reality 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Why is it challenging? 



Motivation: iPhone data



Sensor fusion on smartphones
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Fusion refers to combining 
information from several sources
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Smartphone sensors include:

• Accelerometer  
• Gyroscope  
• Camera  
• Magnetometer (compass)

• GNSS (such as GPS)

• Wi-Fi/BLE

• Microphone



Inertial Navigation: How it could work
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But these are all only hardware limitations...

We can observe acceleration and  
angular velocity in the mobile phone

Inertial navigation
✦  Velocity is the integral of acceleration.

✦  Position is the integral of velocity.

✦  We can observe acceleration and angular velocity in the mobile phone.

Position Velocity Acceleration



Inertial navigation: Why it does not work
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All inertial navigation systems suffer from integration drift
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Small errors in measurement of acceleration and  
angular velocity …
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Progressively larger errors in velocity…
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Even greater errors in position. 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The dominant component in acceleration is gravity.
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But these are all only hardware limitations...

Even slight error in orientation makes the gravity ‘leak’. 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(not observing the absolute
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But these are all only hardware limitations...

The sequential nature of the problem makes the errors 
accumulate.
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Low sampling frequency 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But these are all only hardware limitations...

Missing data / variable sampling rate


But these are all only hardware limitations…



Inertial Navigation: How to make it work
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But these are all only hardware limitations...

Input data is the accelerometer data ak and gyroscope data       .
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Inertial Navigation: How to make it work

I Input data is the accelerometer data ak and gyroscope
data !k .

I Dynamical model:
0
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for the position pk , velocity vk , and orientations qk over
time steps tk .

I A (non-linear) Kalman filter combines the model with the
data in a probabilistic way.

[1] Solin et al. (submitted). Inertial odometry on handheld smartphones.

[1] Solin A, Santiágo C, Rahtu E, Kannala J (FUSION 2018).  
Inertial odometry in handheld smartphones.
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But these are all only hardware limitations...

Additional constraints are required.
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

This framework can use:

• Zero-velocity updates

• Position fixes

• Loop-closures

• Barometric air pressure for relative height

• Indirect orientation info

• … 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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)
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(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

A pseudo-constraint keeping the velocity component from 
exploding



Example studies
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But these are all only hardware limitations...

Equipment used: 

• Off-the-shelf iPhone
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Sensors: 

• Gyroscope, accelerometer

• Sampling rate: 100 Hz
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I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Computations: 

• Off-line 

        …but can (of course) be done on the device



Example: With position fixes

Note: The camera is not used at all.
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Figure 3: A PDR example with first descend-
ing two levels down and then taking the eleva-
tor back up. The path was started at origin and
the path ends with a loop-closure in the same
place. The points where the phone touches the
floor level (the sharp drops in vertical position)
are zero-velocity updates. No absolute position
info was given to the model.

3.6 Pseudo-Measurement Updates
Without position fixes, loop-closures, or ZUPTs the

inertial navigation system quickly becomes unstable.
Once the estimates start diverging, they easily loose
their numerical precision. The main source of these
problems is gravity ‘leaking’ into the acceleration input
and corrupting the velocity vector. Once the velocity
starts to drift, the position diverges almost instantly.

However, even without other auxiliary information, it
is possible to keep the system informed about a reason-
able scale of velocity. In our model, we present a simple
yet powerful pseudo-update formulation that keeps the
speed in the range of some meters per second and dis-
courages the system from accelerating into higher ve-
locities.

The pseudo-update model is defined in terms of the
speed of the object, when it is not stationary. The speed
(the Euclidean norm of the velocity) is

h(x) = kvk. (11)

In our experiments the pseudo-updates are
parametrized as follows. The speed observation
y = 0.75 m/s with a measurement noise � = N(0, 22).
The large measurement noise variance keeps the update
non-informative in comparison to other information
sources.

4. EXPERIMENTS
This section is dedicated to showing the capability,

versatility, and performance of the inertial navigation
system presented in the previous sections.

In the examples, the interest was put on Apple phones
and tablets—mostly because of their uniform hardware
and good software compatibility between devices. The
device models used in the examples are the iPhone 6
and the iPad Pro (12.9-inch model). Both these models
are equipped with built-in IMUs (InvenSense MP67B)
and a barometric sensor (Bosch Sensortec BMP280). In
all experiments, the IMU sensor data and the associated
timestamps were collected at 100 Hz, and the barom-
eter data (when used) at approximately 0.75 Hz. The
data was collected using an in-house developed data col-
lection application, and the paths were reconstructed
o↵-line in Mathworks Matlab.

4.1 Pedestrian Dead-Reckoning
The most apparent use case for the presented model

is to apply it to pedestrian dead-reckoning, where the
mobile phone (iPhone 6) is carried by the user indoors.
There exist a multitude of methods for dead-reckoning
using data provided by mobile phones. Therefore the
aim of this experiment is to show how this method dif-
fers from others by its generality.

Figures 1 and 3 summarize features of the proposed
INS system; the example includes the use of zero-
velocity updates, position fixes, pseudo-measurements
constraining the speed, and barometer observations.
This experiment covers traditional navigation-like PDR
use cases (walking with the phone in a fixed orienta-
tion), where SHS systems are often used, cross-floor
tracking, where visual tracking methods are usually the
method of choice, and bag/pocket use cases, which cur-
rently often require resorting to radio based position-
ing. The generality of our INS system can cover them
all with only one method and no external hardware.

In the first example, the path was started on
the ground floor with zero-velocity updates (no pre-
calibrations done). First the user walked up a flight of
stairs to the first floor holding the phone in the hand.
On the first floor a position fix was given, after which
the phone was put in a bag. Next, the phone was taken
out of the bag and put in the trouser pocket. Before
descending to the ground floor, the phone was taken
out of the pocket and a second position fix was given,
which aligned the path to the map and was able to pro-
vide absolute information of the scale. On the ground
floor the a manual loop-closure was given to indicate
that the phone had returned to the starting point, and
the phone was placed on the floor for some final zero-
velocity updates. The tracking path is accurate and
follows the true path up to decimetres.

Figure 2 shows the altitude profile of the path. The
ZUPTs where the phone is placed on the floor are clearly
showing, as well as the stair climbing. The drop in
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But these are all only hardware limitations...

Combining visual and 
inertial data for odometry
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Constraints from visual 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Strengths over visual-only:

• Infer the true scale

• Survive from occlusions
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But these are all only hardware limitations...

Small field-of-view  
(monocular camera)

Google Tango FOV
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Small field-of-view  
(monocular camera)

iPhone FOV
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Additional problems on smartphones
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Small field-of-view  
(monocular camera)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Rolling-shutter camera  
(not optimised for VIO)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Limited processing power  
(maybe not that limited…)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Handheld movement  
(different from a drone/robot)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Full occlusions 
(the camera might be covered)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

No control of environment  
(moving objects, feature-poor)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Previous methods tend to be developed visual-first 
(and in this case visual information is bad)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Treats visual information as a signal of opportunity
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I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Information hidden within the noise 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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

The camera provides bursts of high-quality odometry 
(recognise those bursts!)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

A calibrated IMU can provide good long-range results 
(learn the calibration online!)

PROBABILISTIC INERTIAL-VISUAL ODOMETRY

[2] Solin A, Santiágo C, Rahtu E, Kannala J (WACV 2018).  
PIVO: Probabilistic Inertial-Visual Odometry for Occlusion-Robust Navigation



PIVO

Probabilistic inertial-visual odometry
Arno Solin

7/26

Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

State space model (solvable by EKF)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Dynamics driven by the IMU 
(alike the inertial odometry)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Pose augmentation on every new frame
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Visual update performed per feature track
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Suspicious visual updates rejected 
(if not agreeing with the uncertainties)



City-wide example



City-wide example



Recap - inertial-visual odometry
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Principled approach for 
fusing inertial and visual 
information
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Robustness to occlusion 
and dynamic objects in the 
scene
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Comparable with state-of-
the-art in ideal scenes
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Improved performance in 
challenging conditions
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Tracking provides relative 
motion of the device
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Track must be aligned with a 
map to obtain global 
coordinates
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

This can be solved using 
deep learning

Kendall, Grimes & Cipolla: PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV 2015

Image courtesy of Kendall et al.  
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Given training images, we compute the corresponding camera poses 
and a point cloud representing the 3D scene structure (= visual map)   

• This is called structure-from-motion (cf. VisualSfM, COLMAP)

Image courtesy of Kendall et al.  
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Additional problems on smartphones
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Given training images, we compute the corresponding camera poses 
and a point cloud representing the 3D scene structure (= visual map)      

• This is called structure-from-motion (cf. VisualSfM, COLMAP)
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

At test time, the task is to estimate the camera pose (3D location + 3D 
orientation) for a query image with respect to the visual map
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

We train a fully convolutional neural network (CNN) for regressing the 
scene coordinates (X,Y,Z) for all pixels
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Additional problems on smartphones
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(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

We train a fully convolutional neural network (CNN) for regressing the 
scene coordinates (X,Y,Z) for all pixels
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

We compute the camera pose by solving the perspective-n-point 
problem from the resulting 2D-to-3D matches using RANSAC  
(i.e. CNN maps the 2D pixel coordinates to 3D scene coordinates) 



Angle-based single-view reprojection loss
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

We propose angle-based reprojection 
loss for optimizing the CNN
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

The angle between the rays 
corresponding to true (X’) and 
predicted (X) scene coordinates is 
minimized for all pixels in all training 
images
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

This formulation does not require a 
3D scene model, training images with 
poses are sufficient!




State-of-the-art results 
for 7-Scenes dataset



Localization of each frame in a test video 
(no tracking)

Brachmann & Rother (CVPR 2018)  Ours   

Li et al.: Scene coordinate regression with angle-based reprojection loss for camera relocalization. ECCVW 2018
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I IMUs are cheap and small
I Noisy and low-quality signals
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I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Contributions for both tracking and localization:

• Probabilistic inertial-visual odometry for occlusion-robust navigation

• Scene coordinate regression with angle-based reprojection loss 
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Ultimately, tracking and localization should be integrated
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Additional problems on smartphones

I IMUs are cheap and small
I Noisy and low-quality signals

(biases, transient effects, alignment
issues, etc.)

I Additive and multiplicative biases
(not observing the absolute
accelerations or rotations)

I Low sampling frequency
(100 Hz vs. 2000 Hz)

I Missing data / variable sampling rate

But these are all only hardware limitations...

Potential for impact in various areas:

• More robust and precise navigation for autonomous machines 

(drones, robots, vehicles)

• Improved inside-out tracking for virtual reality glasses

• 3D-aware mobile applications (e.g. for measurement purposes)

• Immersive augmented reality applications for smartphones 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