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Randomized Clinical Trial
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Baseline

Statin Placebo

Cholesterol-lowering statins are 
associated with improved survival 
among prostate cancer patients

The serum lipidome contains 212 lipid 
aggregates, whereas the intraprostatic
lipidome contains 4494 molecules. 
The RCT has 100 men.

Does the statin intervention 
cause lipidome shift in the serum 
and in the prostate?

Condition Condition



Random Forest Classification

A decision tree
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Random Forest Classification

Multiple trees is…a forest



Random Forest Classification

1. Draw a bootstrap sample B of size N from the training data
2. Grow a random forest tree to the bootstrapped data, and repeat:

i. Select m variables randomly from the p variables
ii. Pick the best variable/split-point among the m
iii. Split the node into two daughter nodes

3. Output the ensemble of trees, i.e., the forest
4. Predict the class based on majority vote

Obtain:
1. Classification error
2. N x N proximity matrix
3. Variable importance



Random Forest Classification

Can we make inference based on:
1. Classification error
2. N x N proximity matrix
3. Variable importance

How about in practice?



Random Forest In Practice
Serum lipidome before the intervention: n = 100, p = 212
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Random Forest In Practice
Serum lipidome before the intervention

1. Classification error: 44.66 % 
(Placebo 48 %, Statin 42 %)

2. Proximity plot
3. Variable importance N/A



Random Forest In Practice
Serum lipidome after the intervention

1. Classification error: 11.65 % 
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Random Forest In Practice
Serum lipidome after the intervention

1. Classification error: 11.65 % 
(Placebo 8.33 %, Statin 14.55 %)

2. Proximity plot
3. Variable importance

1. Total Cholesterol in IDL
2. Cholesterol esters in IDL
3. Concentration of Large LDL



Random Forest In Practice

Before = random After = systematic



Wait, how about chance?

‘Only on double six, I’ll go!’



Don’t do it!

‘Only on double six, I’ll go!’
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Random Forest In Practice
Intraprostatic lipidome after the intervention: n = 100, p = 4494



Random Forest In Practice
Intraprostatic lipidome after the intervention: n = 100, p = 4494

1. Median classification error: 50 % 
(Placebo 55 %, Statin 45 %)



Random Forest In Practice
Intraprostatic lipidome

1. Median classification error: 50 % 
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2. Proximity plot
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Random Forest In Practice
Intraprostatic lipidome

1. Median classification error: 50 % 
(Placebo 55 %, Statin 45 %)

2. Proximity plot

àToo much hay in the stack
àNeed brain…and “t-test”

àRoughly search for statistically 
significant difference in the lipid 
levels between the study arms, 
discard non-significant from the 
analysis.



Random Forest In Practice
Intraprostatic lipidome after the intervention: n = 100, p = 22

1. Median classification error: 36.8 % 
(Placebo 41.6 %, Statin 35 %)



Random Forest In Practice
Intraprostatic lipidome

1. Median classification error: 36.8 % 
(Placebo 41.6 %, Statin 35 %)

2. Proximity plot
3. Variable importance:

1. Vitamin-D like compounds
2. LPC 20:4
3. PC 20:1_18:1



Random Forest In Practice

Too much hay Reduced hay
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Beats the coin flip…

Serum, after

Intraprostatic, after

Classification error



Conclusion statement
1. Statin intervention causes clear lipidome shift in the serum, as 

expected.
2. Furthermore, we observe a slight shift in the intraprostatic

lipidome profile as well.

Therefore, any benefit statin use might display, can be partly 
mediated by lipids.
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Wrap-up
• This time, the needle was in the haystack
• The friendly trio, AI, Machine Learning, and statistics are all 

every-day tools in multiple fields
• They are also really good tools when they are interpretable and 

help you to explain the underlying mechanism
• Furthermore, it is really helpful if you can communicate what 

you do, as an expert, to another expert
• You should not trash t-test
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Thank you!
This is the end of the presentation.
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